قطع ناقص

القطع الناقص أو الإهْلِيلَج (بالإنجليزية: Ellipse)‏ هو المنحني المستوي الذي يحقق الخاصية التالية: مجموع بُعد أي نقطة على هذا المنحنى عن نقطتين ثابتين داخله (تسميان البؤرتان) يبقى ثابتا.[1][2][3]

البؤرتان هما النقطتان F1 و F2 في الشكل.

أي يمكن رسم القطع الناقص بواسطة خيط مثبت من طرفيه في نقطتين f1 , f2 ورسم القطع الناقص بالقلم حولهما انطلاقا من النقطة x .

القطع الناقص هو أيضا أحد أنواع القطوع المخروطية، فعند قطع مخروط بمستوى مائل على محور المخروط نحصل على قطع ناقص.

يُهتم بالقطع الناقص بصفة خاصة بسبب أن الأجرام السماوية تسير في أفلاك حول الشمس في مدارات في شكل القطع الناقص، وتحتل الشمس أحد بؤرتيه. هذا ما توصلت إليه قوانين كيبلر. فعند مشاهدة مذنب يأتي من الجزء الخارجي للمجموعة الشمسية منجذبا إلى الشمس تزداد سرعته تدريجيا ثم يُجري منحنيا خلفها ثم يبتعد عنها ثانيا، وتنخفض سرعته اثناء ابتعاده عن الشمس. هذا المسار يكون في شكل قطع ناقص ؛ وتكون الشمس في إحدى بؤرتيه.

أنظر الشكل 1: النقطة x هي إحدى النقط على القطع الناقص. والنقطتان F1 و F2 هما بؤرتي القطع الناقص. إذا وصـّلنا خيطا طويلا شيئا ما بين البؤرتين وقمنا من النقطة x برسم محيط حولهما نحصل على شكل القطع الناقص.

إذا أقمنا العمودي على خط المماس عند النقطة P فإن العمودي يقسم الزاوية بين الخط xF2 والخط xF1 إلى زاويتين متساويتين (انظر الشكل 1 أو الشكل 3).

دعونا نرى بعض النتائج المترتبة على هذا البيان:

في طاولة بلياردو على شكل اهليج، إذا القينا كرة على حفتها من إحدى بؤرتيها ستنعكس بالضرورة على البؤرة الأخرى.

والشيء نفسه يحدث في مرآة مقعرة على شكل اهليج فيه جميع أشعة الضوء المنبعثة من بؤرة تمر بالضرورة بالبؤرة الأخرى بغض النظر عن اتجاه كل شعاع.

وبالمثل، في غرفة على شكل قطع ناقص تصل الموجات الصوتية التي تبدأ في بؤرة إلى البؤرة الأخرى من كل الاتجاهات ؛ وبما أن مسافة المسار للوصول من بؤرة إلى أخرى متساوية فإن موجات تصل بشكل متزامنة تماما : هذا ما يفسر أيضا سهولة التواصل السمعي بين شخصين موضوعين في البؤرتين حتى إذا ما كانا متباعدين.

باستخدام خواص القطع الناقص يمكن بناء مسرحا يتمتع فيه جميع الزوار بسماع الصوت منتظما .

يمكن رسم القطع الناقص في هيئة منحنى في مستوى كارتيزي بالاستعانة بخط خارجه يسمى الدليل D (أنطر الشكل 4) :

وفيه ينطبق :

أي أن حاصل ضرب أي خط مثل PD في معامل التباعد المركزي e يساوي الخط PF2.

حيث P هي نقطة على محيط القطع الناقص والمسافة PD هي بعدها عن الدليل D (الخط الرأسي المنقط الأزرق). PD يسقط دائما عموديا على الدليل D .

أي أن الاختلاف المركزي قيمته:

في الرسم البياني الكرتيزي يمكننا تمثيل النقطة بالنقطة على المحورين x , y :

(إذا كانت e=1 ينتج قطعا مكافئا ، وإذا كانت e>1 ينتج قطعا زائدا ، وإذا كانت e=0 تنتج دائرة) وتجتمع فيها البؤرتان في بؤرة واحدة.) نسبة المسافة بين النقطة P والبؤرة والمسافة بين P والدليل ثابتة وتساوي معامل التباعد المركزي .

يمكن تبسيط معادلة القطع الناقص في النظام الكرتيزي بدلالة القطرين a وb بالمعادلة :

لاحظ العلاقة الخاصة عندما يكون a مساويا لـ b يمكن الحصول على معادلة الدائرة (بوضع )

يعطى معامل التباعد المركزي أيضا بالعلاقة:

كما أن المسافة من أي من البؤرتين إلى المركز C هي حاصل الضرب , وهي تساوي أيضا

يمكن إعادة تعريف القطع الناقص عندما تنزاح محاوره عن نقطة الأصل إلى نقطة على الصورة:

هناك العديد من الطرق منها مايلي.

تعتبر هذه الطريقة من أدق الطرق المستعملة في رسم القطاعات الناقصة كما تتميز بسهولة استخدامها إذ تعتمد فقط على تحريك خيط مثبت بين مسمارين. لرسم قطع ناقص يمكن اتباع التعريف والستعانة بخيط مرن (مثل خيط إبرة الخياط) وعمل الاتي:

الاختلاف المركز e للقطع الناقص قيمته دائما بين 0 و 1 .

وفي الحالة الخاصة عندما تكون e=0 يكون الناتج دائرة.

لهذ نسمي e معامل التباعد المركزي.

في هذه الطريقة تثقب المسطرة من نقطة غير الوسط (لغير الدائرة) وتنزلق بين ضلعي إطار متعامدين. إذا وضع قلم الرسم مثلا داخل الثقب سيتم رسم ربع قطع الناقص في كل انزلاق مكتمل.

تتمثل هذه الطريقة في عمل اسطوانة دائرية قطرها يساوي القطر الأصغر للقطع المطلوب ثم يتم قطعها (بالمنشار مثلا) بشكل مائل بحيث يكون امتداد طوله مساوي طول القطر الأكبر في القطع الناقص. يصبح السطح المقطوع صورة مثالية للقطع الناقص ويمكن رسم القطع حوله عند تثبيته على ورقة الرسم.

يمكن الاستعانة بالتعريف الرياضي للقطع الناقص ورسم نقاط معينة لـ x و y بدلالة a وb. حيث يمكن تبسيط التعريف الأصلي إلى:

عند وجود عدد كاف من النقاط لكل زوج (x,y) يمكن بوصل النقاط واحدة تلو الأخرى الحصول على صورة تقريبية للقطع الناقص. توجد طرق تقريبية أخرى مثل الدائرتين والشعاع والمماس.

باستخدام معادلات حساب المثلثات يمكن صيغة القطع الناقص

ترجع الإحداثية t المستخدمة في الرسم إلى عالم الرياضيات فيليب دي لاهير.[5]

حيث:

تساوي مساحة القطع الناقص :

حيث و هما طولا نصف المحور الأكبر والأصغر، على التوالي. صيغة المساحة بديهية: نبدأ بدائرة نصف قطرها (لذا فإن مساحتها هي ) ونضربها في المعامل لعمل القطع الناقص . من السهل أيضًا إثبات صيغة المساحة بدقة باستخدام التكامل على النحو التالي. يمكن كتابة معادلة القطع الناقص على النحو التالي . من أجل ، هذا المنحنى هو النصف العلوي للقطع الناقص. لذا فإن ضعف تكامل على المجال سيكون ضعف مساحة القطع الناقص:

التكامل الثاني هو مساحة دائرة نصف قطرها ، أي . إذن:

ليكن a نصف محوره الكبير وb نصف محوره الصغير، يُحسَب محيط القطع الناقص بتطبيق هذا القانون:

حيث هو معامل التباعد المركزي، و هو التكامل الإهليلجي التام من النوع الثاني:

حيث n!! هو عاملي ثنائي.

وبطريقة أشمل

كما تعطي طريقة رامانجن تقريبا أفضل:

وبتقريب آخر:

كحالة خاصة عندما يكون القطر الأصغر نصف الأكبر:

وبتقريب مكتسب عمليا:


تحديد المسافتين الأدنى الأقصى (الملونتين بالاحمر والاصفر) بين اهليجين غير متشابهين (الملونين بالارجواني)[6]

شكل 1:القطع الناقص وبعض خصائصه
أمثلة عن الإهليلج
شكل 2:مخروط دائري قائم (يسار) و الآخر مائل (يمين) وقاعدته تشكل قطعا ناقصا.
قطع ناقص مركزه في , وله بؤرتين و , محوره الكبير (أحمر) ومحوره الصغير (أخضر).
مقطع في مخروط يمثل قطعا ناقصا.
شكل 3 :العمودي على المماس عند أي نقطة P ينصف الزاوية التي يمر ضلعيها ببؤرتي القطع الناقص.
شكل4:القطع الناقص وبعض خواصه:
المحور الأكبر هي المسافة بين a , -a
المحور الأصغر هي المسافة b , -b
PF1+ PF2 =2a
e=PF2/PD
e= معامل التباعد المركزي.
رسم قطع ناقص معلوم 5 نقاط[4]
رسم القطع الناقص: طريقة غاردنر.
صورة متحركة لطريقة الخيط والمسمارين
طريقة المسطرة والإطار
رسم النقاط على أساس الصيغة البارامترية واستخدام الإحداثية لإحداثيى t التي ترجع إلى دي لاهير.
قطع ناقص: شكل متحرك لطريقة دي لاهير.
قطع ناقص (أحمر) نحصل علية بقطع مخروط بمستوي مائل. بحيث يقطع جميع رواسم المخروط