تعامد (هندسة)

في الهندسة الرياضية، يعتبر خطان أو مستويان (أو خط ومستوى) متعامدين (بالإنجليزية: perpendicular)‏ على بعضهما إذا شكلا زوايا متجاورة متطابقة (على شكل حرف T). ففي الشكل 1، القطعة المستقيمة AB متعامدة على القطعة المستقيمة CD في النقطة B، ويعبر عن تعامد المستقيمين AB وCD بعبارة: .[1]

جميع الزوايا المكونة من تعامد خطين مستقيمين هي زوايا قائمة (قياس الزاوية القائمة يساوي ½ π راديان، أو 90° درجة). وبالعكس فإن أي خطين مستقيمين يشكلان زوايا قائمة فهما متعامدان .[1]

في النظام الإحداثي الديكارتي يمكن وصف خطين مستقيمين ل1 ول2 بالمعادلتين التاليتين:

ل1: y = a×x + b

ل2: y = c×x + d

طالما أن كلاً من الخطين المستقيمين غير رأسي، فإن ميل ل1 هو a وميل ل2 هو c. ويكون الخطان المستقيمان ل1 ول2 متعامدين إذا كان حاصل ضرب ميليهما يساوي -1، أي a × c = -1 .[2]

وفي الهندسة التحليلية، يكون المتجهان متعامدين إذا كان: ميل الأول × ميل الثاني = -1

لإسقاط عمودي على المستقيم AB يمر بالنقطة P باستخدام الفرجار والمسطرة نقوم بالخطوات التالية (انظر شكل 2):

لإنشاء عمودي على خط مستقيم من نقطة عليه نقوم بالخطوات التالية

لإنشاء عمودي على خط مستقيم في أي موضع منه نقوم بالخطوات التالية (انظر شكل 4):

كما هو موضح في شكل 5، إذا كان كل من خطين مستقيمين (a و b) متعامدا على خط ثالث (c)، فإن كل الزوايا الناتجة عن التقاطع مع هذا الخط الثالث تكون زوايا قائمة. وبناء على ذلك، فإنه في الهندسة الإقليدية، أي خطين مستقيمين كل منهما عمودي على خط ثالث فهما متوازيان، بناءً على مسلمة التوازي. وبالعكس، فإن أي خط مستقيم عمودي على خطً مستقيمٍ ثانٍ، فإنه يكون عمودياً على أي خط مستقيم موازٍ له.

في شكل 5، كل الزوايا المظللة بالبرتقالي هي زوايا متطابقة، لأن الزوايا المتقابلة بالرأس متطابقة وكذلك الزوايا الداخلية المتبادلة الناشئة عن قاطع لخطين متوازيين هي متطابقة. ومن ثم، فإنه إذا كان خطان a و b متوازيين فإن أياً من النتائج التالية تؤدي للنتائج الأخرى كلها:

في الجبر، لأي معادلة خطية (y = m × x + b)، فإن ميل المتعامدات عليها هو (-1/mالمعكوس الجمعي لمقلوب ميل المعادلة الأصلية.

ولإيجاد العمودي على خط مستقيم (y = m × x + b) ويمر أيضاً بالنقطة (x، y) نحل المعادلة y = (-1/m) × x + b، بتعويض قيم m وَ x وَ y المعلومة لإيجاد قيمة b في معادلة الخط المطلوب.

في التفاضل، لإيجاد العمودي على دالة نحسب مشتقة هذه الدالة، فيكون هذا هو ميله (m) عند أي نقطة (x، y). فنقوم بحل المعادلة y = (-1/m) × x + b، بتعويض قيم m وَ x وَ y المعلومة لإيجاد قيمة b في معادلة الخط المطلوب.

رمز التعامد هو . فمثلاً تعني أن الخط المستقيم AB عمودي على الخط المستقيم CD، وتقرأ: AB عمودي على CD. الكود الخاص بهذا الرمز في مجموعة حروف يونيكود هو U+27C2 وهو ضمن الرموز الرياضية المتنوعة-المجموعة أ (بالإنجليزية: Miscellaneous Mathematical Symbols-A range)‏، وهو شبيه برمز التاك المقلوبة (U+22A5) لكنه حرف مختلف.

يكون مستوى بيتا عمودي (اللون الابيض) على آخر الفا (اللون الاخضر) إذا كان لدى بيتا خط عمودي على الفا. علما بأن خط يكون عمودي على مستوى إذا كان الإسقاطات العمودية للخط عمودية على اثار المستوى.

في المثال المرفق معلومة الاسقاطات العمودية لخط ر (اللون الازرق) ومستوى الفا (اللون الاخضر)، مطلوب تحديد المستوى الذي يمر بالخط ر بحيث يكون عمودي على الفا. ومن ثم التحقق من النتيجة النهائية عن طريق عملية الدوران على مستوى الاسقاط الأول كما هو مبين في الجهة اليمنى من الصورة المرفق.

شكل 1: الخط AB عمودي على الخط CD، لأن كلا الزاويتين التان يشكلهما (اللونين البرتقالي والأزرق) تساوي 90 درجة
شكل 2: طريقة إسقاط عمودي (الأزرق) على المستقيم AB من النقطة P
شكل 3: إنشاء عمودي على مستقيم من نقطة عليه (B) - خطوة 1
شكل 4: طريقة رسم قاطع عمودي على خط مستقيم
شكل 5: الخطان a و b متوازيان ويقطعهما القاطع c
تعامد بين مستويين